PrairieLearn Pi Pico TM4C123GH6PM Emulator

Senior Design May 2024 - 33

Mitch Hudson
Tyler Weberski
Chris Costa
Andrew Winters
Carter Murawski
Matt Graham

Table of Contents

PrairieLearn TM4C123GH6PM Emulator
Senior Design May 2024 - 33
Table of Contents
Introduction
Repository Structure
Overview
emulator
pico-sdk
rp2040js
build-hex-files
Using the Automated Script Configuration
Overview
Functionality
Running the Script
Configuring the Existing Repository Structure
Overview
Configuration
Configuring the Emulator from Scratch
Overview
Configuration
Next Steps for Implementation
Overview
Next Steps
Resources
General Resources
Repositories
Data Sheets

S owvwoowua oo, EAPAPAPRPROOLOWOOLOWON A

Introduction

This document outlines how to use and configure the TM4C123GH6PM emulator
created by the sdmay24-33 team. This will include the setup of the emulator from the
sdmay24-33 repository, how to set up the emulator from scratch, and how to use the
automated script. This will also include the next steps that may be taken to implement
the emulator into PrairieLearn further, as well as a walkthrough of the repository
structure. This emulator is intended to be used to compile C code specific to the
microcontroller. This emulator's intended functionality is intended to be used to compare
student-written code to randomly generated correct answers, as well as for generating
code for PrairieLearn interactive questions.

Repository Structure

Overview

The sdmay24-33 repository contains an emulator directory. This document focuses on
the emulator directory structure only. Please see other documentation for the structure
of the sdmay24-33 repository in its entirety. The emulator directory is broken into the
three subdirectories of pico-sdk, rp2040js, and build-hex-files.

emulator

The emulator directory contains the three subdirectories of pico-sdk, rp2040js, and
build-hex-files. This directory also contains the emulator.sh script and the
npm_output.txt text file. The emulator.sh script will be discussed in the “Using the
Automated Script Configuration” section below. The npom_output.txt text file is used to
store the outputs of the emulator.sh script.

pico-sdk

The pico-sdk directory holds the SDK information for the original Raspberry Pi Pico
emulator. This directory is necessary for the running of the emulator.

rp2040js

The rp2040js directory holds the original JavaScript emulator of the Raspberry Pi Pico.
This directory is where complied C files are run, and their results are determined.

build-hex-files

The build-hex-files directory is used as the custom build location for C files. This
directory contains the build-hex-files.c file, which is modified to contain the C code that
is to be executed on the emulator.

Using the Automated Script Configuration

Overview

This section illustrates how to use the emulator.sh existing script to run the emulator.
This script will employ the steps seen in “Configure the Existing Repository Structure”
and output to a text file. This script can be modified to meet the specific needs of its
application. This script also contains comments to help explain the functionality in depth.

Functionality

The functionality of the emulator.sh script is as follows: replace any username
occurrences with the current user account, configure path variables for the SDK, install
any needed packages, build a hex file from the modified C file in build-hex-files, copy
the hex file to the correct location in rp2040js, configure the environment, run the hex
file on the emulator, and store the output in the npom_output.txt text file.

Running the Script

From your Linux environment’s home directory, run the following Git clone command:

S https:/f/git.ece.iastate.edu/sd/sdmay24-33.qgit

This will create the directory called sdmay24-33. Change into the nested emulator
directory and run the script included within:

S .femulator.sh

Running this script will output the results to the npm_output.txt text file:

S less npm_output.txt

Hello, World!

hpm output. txt (END)

Configuring the Existing Repository Structure

Overview

This section details the process of configuring the emulator to run within the
sdmay24-33 repository with the preexisting modifications. This section is intended to be
informative, and the ‘Using the Automated Script Configuration” section is advised to be
used in its place.

Configuration

On the Linux environment, open Terminal and navigate to the user’s home directory.
Then, run the following Git clone command:

S https://git.ece.ilastate.edu/sd/sdmay24-33.git

This will create the directory called sdmay24-33. Change into this directory and run the
following commands to ensure your system is up to date:

5 cd sdmay24-33/emulator/
5 sudo apt update

$ sudo apt install

After completing the above step, the configuration of the emulator can begin. To start,
run the following installation command:

$ sudo apt install cmake gcc-arm-none-eabi libnewlib-arm-none-eabi build-essential

This will install the proper cmake configuration for the emulator. Next, open the following
file using nano:

S sudo nano ~/.bashrc

Once inside the file editor, add the following line to the end of the file if it does not
already exist. The variable $USER automatically fills the current user’s username. If the
given line exists in the file with another username rather than the user currently logged
in, it must be replaced:

PICO SDK_PATH=/home/ /sdmay24-33/emulator/pico-sdk

Save the file by pressing Ctrl+X, then pressing Y, then pressing Enter. Leave the
Terminal window open for use later in this section.

If Visual Studio Code is not installed, visit https://code.visualstudio.com/download for
the most up-to-date version.

Install the following Visual Studio Code extensions:

$ code --install-extension marus25.cortex-debug

-extension ms-vscode.cmake-tools

-extension ms-vscode.cpptools

Now Open Visual Studio Code. Inside Visual Studio Code, Select File, Open Folder, and
then select “sdmay24-33/emulator/build-hex-files” in the user’s home directory from the
filesystem:

File Edit Selection View Go Run Terminal

Mew Texk File
Mew File...

MNew Window

Open File...
Open Folder... [Ctrl+K CErl+0]

https://code.visualstudio.com/download

Open the build-hex-files.c file from the navigation pane:

@ EXPLORER

~wBULD-.. (3 B3 U &
» build
build-hex-files.c
CMakelists. txt

= pico_sdk_import.cm...

This file can be edited to include any C code that is to be run on the emulator. Note that
the line “stdio_init_all();” must be the first line of “main()” for standard input and output to
function. Examples of how to use UART functionality are shown in the remainer of the
file. For more examples, visit https://github.com/raspberrypi/pico-examples.

After any modifications have been made and saved, select the Build icon at the
bottom-left corner of the window:

OUTLINE

»# TIMELINE

¥ Build | &+ [»

A prompt will appear at the top of the window for “Select a kit for build-hex-files.” Select
“GCC 10.3.1 arm-none-eabi” from the dropdown:

https://github.com/raspberrypi/pico-examples

GCC 10.3.1 arm-none-eabi Using
GCC11.4

linux-gnu

srfbinfarm-none...

After the completion of the build in the Visual Studio Code, the Visual Studio Code
window may be closed.

Open Files and navigate to “sdmay24-33/emulator/build-hex-files/build” in the user’s
home directory. Copy the build-hex-files.hex file to the clipboard:

¢ Home /

70 Recent
% Starred
{sf Home
[Documents
{ Downloads

J1 Music

sdmay24-33 / emulator /

0L
oo =

build-hex- build-hex-
files.bin files.dis
CMakeFiles cmake
install.
cmake

bu...les / build

build-hex-

files.elf

0

compile_
commands.

json

Q =
build-hex- build-hex-
files.elf. Files.hex

map
elf2uf2 generated

~ = — m} *
oL
oo =
build-hex- CMakeCach
files.uf2 e.kxt
Makefile pico-sdk

Next, navigate to “sdmay24-33/emulator/rp2040js” in the user’s home directory. Paste

the build-hex-files.hex file from the clipboard here:

{ {it Home /

0 Recent

% Starred
{at Home

[2) Documents
¥ Downloads
1 Music

(& Pictures

sdmay24-33 / emulator /

build-hex- build-
files.hex scripts

B o

node_ package.
modules json
B o
teskutils tsconfig.
¢js.json

rp2040js

debug

O
package-
lock.json

O
tsconfig.
json

: Q

demo dist
[m3]

prettier. README.
config.js md

~ = = m} x
jest.config. LICENSE
js
src test

After the completion of the above step, the Files window may be closed.

Open the Terminal window used earlier in this section and change into the
“sdmay23-33/emulator/rp2040js” directory:

5 cd rp2040]s

From this directory, run the following installation commands. Note that NodeJS version
20 or later is required:

S sudo apt install nodejs

‘|

sudo apt install npm

Once installed, run the following commands to initialize and start the environment:

npm install

npm start

!!

After running these commands, the output of the C file edited earlier in this section will
be displayed in the terminal, assuming the appropriate output statements were included.
The program can be stopped by pressing Ctrl+C.

S npm start

rp2040js@l.0.1 start
tsx demofemulator-run.ts

Hello, World!~C

Configuring the Emulator from Scratch

Overview

This section details the process of configuring the emulator from scratch to run within
the sdmay24-33 repository without the preexisting modifications. This section is
intended to be informative, and the ‘Using the Automated Script Configuration” section
is advised to be used in its place. This section uses the pico-examples repository to
demonstrate the setup process and provide example code.

Configuration

On the Linux environment, open Terminal and navigate to the user’s home directory.
Then, run the following Git clone command:

S https://git.ece.iastate.edu/sd/sdmay24-33.qgit

This will create the directory called sdmay24-33. Change into this directory and create a
new directory called emulator:

S mkdir emulato

Change into the new emulator directory and run the following commands to ensure your
system is up to date:

5 cd sdmay24-33/emulator/

S sudo apt update
S sudo apt install

Next, clone the following repositories separately inside the emulator directory:

$ git clone https://github.com/wokwi/rp2e4ejs.git
S git clone https://github.com/raspberrypi/pico-sdk.git

S git clone http5:ffgithub.comjraﬂpberrypijpicc—exampleg.gi4

After completing this step, leave the Terminal window open for use later in this section.

Open Files and navigate to sdmay24-33/emulator/rp2040js/src/peripherals and open the
uart.ts file. Leave the Files window open for use later in this section:

10

il
<
i
I
m]
x

{ (st Home / sdmay24-33 / emulator / rp2040js / src / peripherals i Q

D Recent ol _ _ _ _ _ _ _ _

* starred adc.ts busctrl.ts clocks.ts dma.spec. dma.ts i2c.ts io.ts pads.ts peripheral.
ts

ks
{si Home

3 Documents
pio.spec.ts pio.ts ppb.ts pwm.ks reset.ts rkc.ks spi.ts ssi.ts syscfg.ts
¥ Downloads

1 Music
sysinfo.ts tbman.ts timer.spec. timer.ts uark.spec. usb.ts watchdog.
& Pictures ts ts ts

In the uart.ts file, make the following modifications. The comment lines represent the
existing code with their modifications placed int the line below each comment:

146 //case UARTLCR_H:
147 case UARTLCRH:
10 //const UARTLCR H = @Ox2c; 148 return this.line
11 const UARTLCRH = 0xZc; 149 //case UARTCR:
12 f/const UARTCR = 0x30; 150 case UARTCTL:
13 const UARTCTL = 0x30; 151 return this.ctrl
14 //const UARTIMSC = ®x38; 152 //case UARTIMSC:
15 const UARTIM = 0x38; 153 case UARTIM:
195 //case UARTLCR H:
196 case UARTLCRH:
197 this.lineCtrlRegister = value;
198 break:
199
200 //case UARTCR:
201 case UARTCTL:
202 this.ctrlRegister = value;
203 if (this.enabled) {
204 this.rp2040.dma.setDREQ(this.dreq.tx);
205 } else {
206 this.rp2046.dma.clearDREQ(this.dreq.tx);
207 }
208 break:
209
218 //case UARTIMSC:
211 case UARTIM:
212 this.interruptMask = value & 0Ox7ff;
213 this.checkInterrupts();
214 break;

11

Open the existing Files window and open the uart.spec.ts file and make the following
modifications:

7 //const OFFSET_UARTLCR_H = 8x2c;

8 const OFFSET_UARTLCRH = H

9

10 describe(, () == {

11 it(, () == {
12 const rp2040 = new RP2040():;

13 const uart = new RPUART(rp2040, , O, { rx: 0, tx: }):

14 J/uart.writeUint32(0FFSET_UARTLCR H, 0x70);

15 uart.writeUint32(0OFFSET_UARTLCRH,):

The section “Configuring the Existing Repository Structure” shows additional
modifications made that will not be required. These modifications include removing
excess print lines from files in the pico-sdk and rp2040js repositories as well as checks
for Git repository configurations that prevented adding the repositories to the
sdmay24-33 repository with the current configuration.

The Files window may now be closed.

Open the Terminal window from earlier in this session, the configuration of the emulator
can begin. To start, run the following installation command:

$ sudo apt install cmake gcc-arm-none-eabi libnewlib-arm-none-eabi build-essential

This will install the proper cmake configuration for the emulator. Next, open the following
file using nano:

S sudo nano ~/.bashrc

Once inside the file editor, add the following line to the end of the file if it does not
already exist. The variable $USER automatically fills the current user’s username:

PICO _SDK_PATH=/home/ /sdmay24-33/emulator/pico-sdk

Save the file by pressing Ctrl+X, then pressing Y, then pressing Enter. Leave the
Terminal window open for use later in this section.

If Visual Studio Code is not installed, visit https://code.visualstudio.com/download for
the most up-to-date version.

12

https://code.visualstudio.com/download

Install the following Visual Studio Code extensions:

S code --install-extension marus25.cortex-debug

Now Open Visual Studio Code. Inside Visual Studio Code, Select File, Open Folder, and
then select “sdmay24-33/emulator/pico-examples” in the user’s home directory from the
filesystem:

File Edit Selection View Go Run Terminal
New Texk File
Mew File...

MNew Window
Open File...

Open Folder... [Ctrl+K CErl+0]

After opening the directory, select the Build icon at the bottom-left corner of the window:

% OUTLINE
> TIMELINE
3 Build | o+ [

A prompt will appear at the top of the window for “Select a kit for build-hex-files.” Select
“GCC 10.3.1 arm-none-eabi” from the dropdown:

Eelect a Kit For build-hex-Files

[Scan For kits] se

[Unspecified] unspecified (Let Cr

GCC 10.3.1 arm-none-eabi Using 52 fusrfbin/arm-none...

GCC 11.4.0 x86_64-linux-gnu L

13

After the completion of the build in the Visual Studio Code, open the Terminal window
from earlier in this section and create the following directory:

S5 mkdir

build-hex-files

Open Files and navigate to “sdmay24-33/emulator/pico-examples” in the user’'s home
directory. Copy the CMakelLists.txt file and paste it into the

“sdmay24-33/emulator/build-hex-files” directory:

{ {it Home / sdmay24-33 / emulator / pico-examples

0 Recent

% Starred
{st Home

[Z] Documents
{ Downloads
J1 Music

&7 Picktures
H videos

%, Trash

— =

+ Other Locations

adc

divider

pico_w

system

blink

dma

interp

pio

timer

build

example_
auto_set
url.cmake

LICENSE.
TXT

pwm

uart

B

~ = = m} =

3]

clocks cmake WUEICENEHES CONTRIBUT
Xt ING.md

]
[s1)
W
-

gpio
multicore picoboard
= [l
README. reset
md
ush watchdog

hello_world i2¢
pico_ pico_sdk_
extras_ import.
import_o... cmake
rkc spi

“CMakeLists.txt" selected (1.6 kB)

Next, navigate to “sdmay24-33/emulator/pico-sdk/src/common/pico_stdlib/include/pico” and
create the file uartmap288.h. Paste the following code into the file:

14

uartmap288.

Now Open Visual Studio Code. Inside Visual Studio Code, Select File, Open Folder, and
then select “sdmay24-33/emulator/build-hex files” in the user’s home directory from the
filesystem:

15

File Edit Selection View Go Run Terminal

New Texk File
Mew File...

MNew Window

Open File...
Open Folder... [Ctrl+K CErl+0]

Open the CMakelLists.txt file from the navigation pane:

@ EXPLORER

vwBULD-.. [B3 U 3

CMakeLists.bxt

Modify the CMakelLists.txt file to contain only the following lines:

16

CMakeLists.txt X

build-hex-

(build-hex les pico_stdlib)

xtra_outputs(build-

Create a new file called build-hex-files.c and modify it only to contain the following lines:

17

build-hex-files.c x

main()

Open Files and navigate to “sdmay24-33/emulator/pico-sdk/external” in the user’'s home
directory. Copy the pico_sdk_import.cmake file and paste it into the
“sdmay24-33/emulator/build-hex-files” directory:

{ external H Q = | = _ O X
7U) Recent
% Starred pico_sdk_
import.
{3t Home cmake

[2) Documents

Open the existing Visual Studio Code Window and select the Build icon at the
bottom-left corner of the window:

18

OUTLINE
» TIMELINE
B0 | £33 Build

A prompt will appear at the top of the window for “Select a kit for build-hex-files.” Select
“GCC 10.3.1 arm-none-eabi” from the dropdown:

[Scan For kits] s

[Unspecified] L fied (L

GCC 10.3.1 arm-none-eabi Using compilers: C = fusr/binfarm-none-eabi-gce, usr/bin/arm-none...

GCC 11.4.0 64-linux-gnu L

After the completion of the build in the Visual Studio Code, the Visual Studio Code
window may be closed.

Open Files and navigate to “sdmay24-33/emulator/build-hex-files/build” in the user’s
home directory. Copy the build-hex-files.hex file to the clipboard:

{ Home / sdmay24-33 / emulator / bu...les / build | : Q = ~| = n = &
0D Recent L_..—)'j
* Starred build-hex- build-hex- build-hex- build-hex- [TIEE A build-hex- CMakeCach
files.bin files.dis files.elf files.elf. Files.hex files.uf2 e.txt
{3} Home map
2 Documents :
O
¥ Downloads CMakeFiles cmake_ compile_ elf2uf2 generated Makefile pico-sdk
install. commands.
I Music cmake json

Next, navigate to “sdmay24-33/emulator/rp2040js” in the user’s home directory. Paste
the build-hex-files.hex file from the clipboard here:

19

{ {it Home / sdmay24-33 / emulator / rp2040js : Q

o FFFPF

1l
<
1
I
m]
x

% Starred build-hex- build- debug demo dist jest.config. LICENSE
files.hex scripts js
{3t Home
[2) Documents . 0 0 (] . .
node_ package. package- prettier. README. src test
¥ Downloads modules json lock.json config.js md
I1 Music - -
O O
&) Pictures tesk-utils tsconfig. tsconfig.
gjs.json json

After the completion of the above step, the Files window may be closed.

Open the Terminal window used earlier in this section and change into the
“sdmay23-33/emulator/rp2040js” directory:

S cd rp2040]s

From this directory, run the following installation commands. Note that NodeJS version
20 or later is required:

S sude apt install nodejs

S sudo apt install npm
Once installed, run the following commands to initialize and start the environment:

S npm install

After running these commands, the output of the C file edited earlier in this section will
be displayed in the terminal, assuming the appropriate output statements were included.
The program can be stopped by pressing Ctrl+C.

S npm start

rp2040js@l.0.1 start
tsx demofemulator-run.ts

Hello, World!~C

Next Steps for Implementation

Overview

This section describes the recommended next steps to implement the emulator.
Specifically, this section refers to the further integration of the emulator into the
PrairieLearn environment and its interactive questions. The goal of this emulator is to
provide a platform to run microcontroller-specific code. Additionally, the emulator aims to
compare the output of preset or randomized microcontroller-specific code to the output
given by a student in an interactive PrairieLearn question.

Next Steps

The recommended next steps for implementation are intended to integrate the emulator
into the PrairieLearn environment. It is recommended that the emulator has an
automated functionality to pass C code generated by an interactive question or a user to
the build-hex-files.c file and that the outputs be compared and evaluated using the
existing functionalities of PrairieLearn. It is also recommended to store the outputs in
separate files, using command line arguments to specify this to the script for easier
comparison. The emulator should also have its outputs evaluated against the expected
outputs of the original TM4C123GHG6PM microcontroller, as not all functionality was
implemented on this emulator. The base addresses for UART found in the file
pico-sdk/src/rp2040/hardware_regs/include/hardware/regs/addressmap.h have not
been changed to the correct values. When these values were changed, it caused issues
and the team was unable to solve these issues before the end of their tenure on the
project. Instead, the file uartmap288.h was created, as seen earlier, and the values
were replaced with the RP2040 values. This should be done for GPIO and all other
desired functions of the microcontroller. The skeleton for this code can be found at
https://class.ece.iastate.edu/cpre288/resources/docs/REF_tm4c123gh6pm.h. The
addresses given should be replaced with the corresponding base addresses.

21

https://class.ece.iastate.edu/cpre288/resources/docs/REF_tm4c123gh6pm.h

Resources

General Resources

Pi Pico Emulator: https://docs.wokwi.com/parts/wokwi-pi-pico
Pi Pico SDK Custom Setup:
https://www.youtube.com/watch?v=TutPFyyT3P8&ab channel=pi3g

Repositories

RP2040JS: https://qithub.com/wokwi/rp2040js
Pi Pico SDK: https://github.com/raspberrypi/pico-sdk
Pi Pico Examples: https://github.com/raspberrypi/pico-examples

Data Sheets

RP2040: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
TM4C123GH6PM:

https://class.ece.iastate.edu/cpre288/resources/docs/Tiva_TM4C123GHE6PM_datasheet
-pdf

22

https://docs.wokwi.com/parts/wokwi-pi-pico
https://www.youtube.com/watch?v=TutPFyyT3P8&ab_channel=pi3g
https://github.com/wokwi/rp2040js
https://github.com/raspberrypi/pico-sdk
https://github.com/raspberrypi/pico-examples
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://class.ece.iastate.edu/cpre288/resources/docs/Tiva_TM4C123GH6PM_datasheet.pdf
https://class.ece.iastate.edu/cpre288/resources/docs/Tiva_TM4C123GH6PM_datasheet.pdf

